Colchicine protects rat skeletal muscle from ischemia/reperfusion injury by suppressing oxidative stress and inflammation
Authors
Abstract:
Objective(s): Neutrophils play an important role in ischemia/reperfusion (IR) induced skeletal muscle injury. Microtubules are required for neutrophil activation in response to various stimuli. This study aimed to investigate the effects of colchicine, a microtubule-disrupting agent, on skeletal muscle IR injury in a rat hindlimb ischemia model. Materials and Methods: Twenty-one Sprague-Dawley rats were randomly allocated into three groups: IR group, colchicine treated-IR (CO) group and sham operation (SM) group. Rats of both the IR and CO groups were subjected to 3 hr of ischemia by clamping the right femoral artery followed by 2 hr of reperfusion. Colchicine (1 mg/kg) was administrated intraperitoneally prior to hindlimb ischemia in the CO group. After 2 hr of reperfusion, we measured superoxide dismutase (SOD) and myeloperoxidase (MPO) activities, and malondialdehyde (MDA), tumor necrosis factor (TNF)-α and interleukin (IL)-1β levels in the muscle samples. Plasma creatinine kinase (CK) and lactate dehydrogenase (LDH) levels were measured. We also evaluated the histological damage score and wet/dry weight (W/D) ratio. Results: The histological damage score, W/D ratio, MPO activity, MDA, TNF-α and IL-1β levels in muscle tissues were significantly increased, SOD activity was decreased, and plasma CK and LDH levels were remarkably elevated in both the IR and CO groups compared to the SM group (P
similar resources
Curcumin protects the rat liver from CCl4-caused injury and fibrogenesis by attenuating oxidative stress and suppressing inflammation.
We previously demonstrated that curcumin, a polyphenolic antioxidant purified from turmeric, up-regulated peroxisome proliferator-activated receptor (PPAR)-gamma gene expression and stimulated its signaling, leading to the inhibition of activation of hepatic stellate cells (HSC) in vitro. The current study evaluates the in vivo role of curcumin in protecting the liver against injury and fibroge...
full textThe effect of phytochemical compounds on indicators of oxidative stress, inflammation and skeletal muscle damage caused by physical activity
Physical activities are associated with increased production of reactive oxygen species. The production of reactive oxygen species is dependent of the intensity, duration and type of activity. Although the physiological amounts of reactive oxygen species are necessary to regulate cell reactions, their excessive production can cause numerous damages to the structure and function of cells and wea...
full textHonokiol protects rat hearts against myocardial ischemia reperfusion injury by reducing oxidative stress and inflammation
Honokiol, a potent radical scavenger, has been demonstrated to ameliorate cerebral infarction following ischemia/reperfusion (I/R) injury. However, its effects on myocardial I/R injury remain unclear. The present study aimed to examine the effects of honokiol on myocardial I/R injury and to investigate its potential cardioprotective mechanisms. Sprague-Dawley rats were pretreated with honokiol ...
full textHydroalcoholic extract of Iranian Caper leaves protects hepatic toxicity by suppressing oxidative stress in mice
Capparis spinosa L. (Caper) is known as an aromatic plant, commonly used in Mediterranean diet, possessing numerous antioxidant compounds such as phenols, rutin, tocopherols, carotenoids, and vitamin C in its leaves. Thus, the purpose of the present study was to investigate the effects of Iranian Caper leaves extract on oxidative stress caused by CCl4 in mice liver. In this study, a total numbe...
full textMicroRNA-424 protects against focal cerebral ischemia and reperfusion injury in mice by suppressing oxidative stress.
BACKGROUND AND PURPOSE We previously showed that the microRNA miR-424 protects against permanent cerebral ischemic injury in mice by suppressing microglia activation. This study investigated the role of miR-424 in transient cerebral ischemia in mice with a focus on oxidative stress-induced neuronal injury. METHODS Transient cerebral ischemia was induced in C57/BL6 mice by middle cerebral arte...
full textMy Resources
Journal title
volume 19 issue 6
pages 670- 675
publication date 2016-06-01
By following a journal you will be notified via email when a new issue of this journal is published.
Hosted on Doprax cloud platform doprax.com
copyright © 2015-2023